
  

A decentralized Public Key Infrastructure that 
supports privacy-friendly social verification

Bogdan Kulynych    Marios Isaakidis

Modern key distribution with ClaimChains

NEXTLEAP Carmela Troncoso   George Danezis
photo by lisa cee



  



  

HIGH-INTEGRITY

Tamper proof

Authenticity



  

HIGH-INTEGRITY

Tamper proof

Authenticity

DECENTRALIZATION

Availability

Censorship-resistant

Global consensus



  

Cryptocurrency chains

Powerful abstraction for identities
Global namespace

No mechanism for social validation
All transactions are public
Users need to buy coins and pay for 
transaction fees
Resource expensive

HEAD

BLOCK HEADER

● pointer to previous block
● hash of block transactions

● timestamp
. . .

TRANSACTIONS

● transaction x
0

● transaction x
1

. . .
 

● transaction x
n



  

Federated “Merkle prefix tree” chains

Accountability
Easy discovery
Efficient

Do not prevent equivocation
Centralization
– Single point of failure
– Surveillance

keybase.io CONIKS CONIKS



  

Merkle binary prefix trees

ROOT

i = 001…
v = value

X

H(child
0
, child

1
)

0 1

0

00 0 0

0 1

111

1

1

Leaf nodes are ordered using 
a Verifiable Random Function

i = 000…
v = value

Y



  

ClaimChains
claimchain.github.io

photo by Wendi Halet



  

ClaimChains

● A ClaimChain for each user/device/identity
● Blocks appended as needed

● Compromises appear as ClaimChain forks
● Owner selects who can read a specific 

claim – all readers get the same content



  

ClaimChains

● A ClaimChain for each user/device/identity
● Blocks appended as needed

● Compromises appear as ClaimChain forks
● Owner selects who can read a specific 

claim – all readers get the same content

cross-hash



  

ClaimChains

● A ClaimChain for each user/device/identity
● Blocks appended as needed
● Compromises appear as ClaimChain forks
● Owner selects who can read a specific claim – all 

readers get the same content

● Propagation of key updates in “cliques” of user
● Vouch for the latest state of a friend’s ClaimChain
● Friend introductions - Social validation – Web of Trust

… while preserving privacy

cross-hash



  

Overview

● ClaimChains are high-integrity, authenticated data stores that can support 
generic claims

● Privacy: a capabilities mechanism for fine-grained claim-specific access control
● Non-equivocation: all readers of a private claim get the same view
● Cross-hashing enables the propagation and vouching of the latest state of 

linked ClaimChains
● Equivocation attempts a compromises produce non-repudiable cryptographic 

evidence (“ClaimChain forks”)
● Flexible in terms of deployment
● Efficient “selective sharing” of claims



  

ClaimChains block structure

Block index

Timestamp

Nonce

ClaimChain version

BLOCK MAP
Merkle prefix tree with all claims and capabilities

CLAIMCHAIN METADATA
● Connected identities

● ClaimChain Public keys (pk
SIG

, pk
VRF

, pk
DH

)

Pointers to previous blocks

Signature
under pk

SIG



  

Block claim map:
Adding a claim

ROOT

label = bob@riseup.net
claim = 0515b693e5



  

Block claim map:
Adding a claim

ROOT

label = bob@riseup.net
claim = 0515b693e5

1) Compute claim key k = VRF  (   || nonce)



  

Block claim map:
Adding a claim

ROOT

label = bob@riseup.net
claim = 0515b693e5

1) Compute claim key k = VRF  (   || nonce)

2) Calculate the index of the leaf node:
i = SHA256( k || “lookup” )



  

Block claim map:
Adding a claim

ROOT

label = bob@riseup.net
claim = 0515b693e5

1) Compute claim key k = VRF  (   || nonce)

2) Calculate the index of the leaf node:
i = SHA256( k || “lookup” )

3) Generate a symm. enc. key
K = SHA256( k || “enc” )



  

Block claim map:
Adding a claim

ROOT

label = bob@riseup.net
claim = 0515b693e5

1) Compute claim key k = VRF  (   || nonce)

2) Calculate the index of the leaf node:
i = SHA256( k || “lookup” )

3) Generate a symm. enc. key
K = SHA256( k || “enc” )

4) Encrypt claim content
C = Enc

K
( VRFproof + “0515b693e5” ) 



  

Block claim map:
Adding a claim

ROOT

label = bob@riseup.net
claim = 0515b693e5

1) Compute claim key k = VRF  (   || nonce)

2) Calculate the index of the leaf node:
i = SHA256( k || “lookup” )

3) Generate a symm. enc. key
K = SHA256( k || “enc” )

4) Encrypt claim content
C = Enc

K
( VRFproof + “0515b693e5” ) 

i = 0110...
v = C



  

ROOT

Block claim map:
Adding a capability for      to read  

i = 0110...
v = C



  

ROOT

Block claim map:
Adding a capability for      to read  

i = 0110...
v = C

1) Establish DH shared secret s between      and      



  

ROOT

Block claim map:
Adding a capability for      to read  

i = 0110...
v = C

1) Establish DH shared secret s between      and      

2) Derive the capability lookup key
i = SHA256 ( nonce || s || “lookup” )



  

ROOT

Block claim map:
Adding a capability for      to read  

i = 0110...
v = C

1) Establish DH shared secret s between      and      

2) Derive the capability lookup key
i = SHA256 ( nonce || s || “lookup” )

3) Derive the symm. enc. key
K = SHA256( nonce || s || “enc” )



  

ROOT

Block claim map:
Adding a capability for      to read  

i = 0110...
v = C

1) Establish DH shared secret s between      and      

2) Derive the capability lookup key
i = SHA256 ( nonce || s || “lookup” )

3) Derive the symm. enc. key
K = SHA256( nonce || s || “enc” )

4) Encrypt claim key VRF  (   || nonce)
C = Enc

K
( k )



  

ROOT

Block claim map:
Adding a capability for      to read  

i = 0110...
v = C

1) Establish DH shared secret s between      and      

2) Derive the capability lookup key
i = SHA256 ( nonce || s || “lookup” )

3) Derive the symm. enc. key
K = SHA256( nonce || s || “enc” )

4) Encrypt claim key VRF  (   || nonce)
C = Enc

K
( k )

i = 1010...
v = C



  

Block claim map:
retrieving the latest update for

ROOT

i = 0110...
v = C

i = 1010...
v = C



  

Block claim map:
retrieving the latest update for

ROOT

i = 0110...
v = C

i = 1010...
v = C

1) Establish DH shared secret s between      and      



  

Block claim map:
retrieving the latest update for

ROOT

i = 0110...
v = C

i = 1010...
v = C

1) Establish DH shared secret s between      and      

2) Derive the capability lookup key
i = SHA256 ( nonce || s || “lookup” )



  

Block claim map:
retrieving the latest update for

ROOT

i = 0110...
v = C

i = 1010...
v = C

1) Establish DH shared secret s between      and      

2) Derive the capability lookup key
i = SHA256 ( nonce || s || “lookup” )

3) Derive the symm. enc. key
K = SHA256( nonce || s || “enc” )



  

Block claim map:
retrieving the latest update for

ROOT

i = 0110...
v = C

i = 1010...
v = C

1) Establish DH shared secret s between      and      

2) Derive the capability lookup key
i = SHA256 ( nonce || s || “lookup” )

3) Derive the symm. enc. key
K = SHA256( nonce || s || “enc” )

4) Retrieve capability block and decrypt it with K
Result: key for    ‘s claim

i = 1010...
v = C



  

Block claim map:
retrieving the latest update for

ROOT

i = 0110...
v = C

i = 1010...
v = C

1) Establish DH shared secret s between      and      

2) Derive the capability lookup key
i = SHA256 ( nonce || s || “lookup” )

3) Derive the symm. enc. key
K = SHA256( nonce || s || “enc” )

4) Retrieve capability block and decrypt it with K
Result: key for    ‘s claim

5) Retrieve    ‘s claim and decrypt it

i = 1010...
v = C

i = 0110...
v = C



  

Block claim map:
retrieving the latest update for

ROOT

i = 0110...
v = C

i = 1010...
v = C

1) Establish DH shared secret s between      and      

2) Derive the capability lookup key
i = SHA256 ( nonce || s || “lookup” )

3) Derive the symm. enc. key
K = SHA256( nonce || s || “enc” )

4) Retrieve capability block and decrypt it with K
Result: key for    ‘s claim

5) Retrieve    ‘s claim and decrypt it

6) Verify VRFproof

i = 1010...
v = C

i = 0110...
v = C



  

Resilience

● Field research to understand user needs
● Collaboration with related communities
● Applied research:

– Cryptographic games to define security and privacy properties
– Formally verified implementation

● Simulations using real world data
● Interoperability and plans for gradual deployment
● User-centric design
● Multidisciplinarity
● Open Innovation (open access and extendability)



  

Thank you
@misaakidis
claimchain.github.io

photo by alcidecota



  

Evaluation of scalability

Claim map construction time Cumulative block storage size



  

Key propagation in a fully decentralized setting

Outgoing bandwidth cost

Email encryption status (%)



  

Merkle binary prefix trees:
Proof of inclusion

ROOT

0
1

0

00 0 0

0 1

111

1

1



  

Merkle binary prefix trees:
Proof of inclusion

ROOT

0
1

0

00 0 0

0 1

111

1

1

(alice@riseup.net, 0x1A2B3C)
VRF

pkVRF
(alice@riseup.net) = 01011...



  

Merkle binary prefix trees:
Proof of inclusion

ROOT

0
1

0

00 0 0

0 1

111

1

1

(alice@riseup.net, 0x1A2B3C)
VRF

pkVRF
(alice@riseup.net) = 01011...



  

Merkle binary prefix trees:
Proof of inclusion

ROOT

0
1

0

00 0 0

0 1

111

1

1

(alice@riseup.net, 0x1A2B3C)
VRF

pkVRF
(alice@riseup.net) = 01011... ROOT

i = 01011…
v =0x1A2B



  

Merkle binary prefix trees:
Proof of inclusion

ROOT

0
1

0

00 0 0

0 1

111

1

1

(alice@riseup.net, 0x1A2B3C)
VRF

pkVRF
(alice@riseup.net) = 01011... ROOT

i = 01011…
v =0x1A2B
i = 01011…
v =0x1A2B



  

Merkle binary prefix trees:
Proof of absence

ROOT

0
1

0

00 0 0

0 1

111

1

1



  

Merkle binary prefix trees:
Proof of absence

ROOT

0
1

0

00 0 0

0 1

111

1

1

VRF
pkVRF

(bob@riseup.net) = 11001...



  

Merkle binary prefix trees:
Proof of absence

ROOT

0
1

0

00 0 0

0 1

111

1

1

VRF
pkVRF

(bob@riseup.net) = 11001...



  

Merkle binary prefix trees:
Proof of absence

ROOT

0
1

0

00 0 0

0 1

111

1

1

VRF
pkVRF

(bob@riseup.net) = 11001...
ROOT

i = 11011…
v =0xFFFF



  

Merkle binary prefix trees:
Proof of absence

ROOT

0
1

0

00 0 0

0 1

111

1

1

VRF
pkVRF

(bob@riseup.net) = 11001...
ROOT

i = 11011…
v =0xFFFF



  

Merkle binary prefix trees:
Proof of absence

ROOT

0
1

0

00 0 0

0 1

111

1

1

VRF
pkVRF

(bob@riseup.net) = 11001...
ROOT

i = 11011…
v =0xFFFF
i = 11011…
v =0xFFFF


	Slide 1
	page2 (1)
	page2 (2)
	page2 (3)
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	page7 (1)
	page7 (2)
	page7 (3)
	Slide 12
	Slide 13
	page10 (1)
	page10 (2)
	page10 (3)
	page10 (4)
	page10 (5)
	page10 (6)
	page11 (1)
	page11 (2)
	page11 (3)
	page11 (4)
	page11 (5)
	page11 (6)
	page12 (1)
	page12 (2)
	page12 (3)
	page12 (4)
	page12 (5)
	page12 (6)
	page12 (7)
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	page17 (1)
	page17 (2)
	page17 (3)
	page17 (4)
	page17 (5)
	page18 (1)
	page18 (2)
	page18 (3)
	page18 (4)
	page18 (5)
	page18 (6)

